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7. BARYONS AND GENERALIZED ORDER 

7.1. The Need for an Ordered S-Matrix Scheme that Includes Baryons 

The sequentially ordered SM, and the DTU scheme based on it, were 
seen to describe from a unified point of view a wide range of phenomena 
in the meson sector; indeed, it appears to have the potential of becoming 
a quantitative theory of mesons (of course a strong-interaction theory 
cannot be complete without including all hadrons, but to the extent that 
baryons do not affect the calculations too strongly, it appears to be a good 
approximation for mesons). 

Given this state of affairs, we found it hard to believe that the ordered 
SM idea would remain limited to mesons, particularly since baryons, too, 
exhibit features that we had come to recognize as the hallmark of the ordered 
SM, such as quark structure (qqq), the OZ[ rule (e.g., ~--~ p/~ etc. is strongly 
suppressed), Regge pole dominance, exchange degeneracy for many 
trajectories, etc. 

In fact, the need to extend duality and particularly the DTU program 
to baryons had been felt acutely for quite a while, and had given rise to 
numerous attempts to accomplish this, none of them really successful. 

One of the more persistent obstacles was the problem posed by the 
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exotic mesons often called baryonium. Duality demands that the four-baryon 
amplitude 

B ~ ~ C 

be expressible as a sum over baryonium resonances in the sad channel. 
Thus baryonium, which one denoted by 

:. p 
i i  

coupled directly with the baryon-antibaryon channel: 

On the other hand, it was known from the properties of purely mesonic 
planar amplitudes that mesonic channels did not couple to baryonium. 
The problem that the above-mentioned theories tended to encounter was 
that baryonium coupled to mesonic channels even at the planar level; this 
also conflicted with the reality of the OZI rule. 

In recent years baryonium candidates have been found experimentally, 
some apparently even with exotic quantum numbers. And, in fact, they 
prefer to decay into baryon-antibaryon pairs rather than into mesons in 
spite of the far smaller phase space available for the former decay, indicating 
that a planar SM approximation in which baryonium is prohibited from 
decaying into nonexotic mesons is desirable from the experimental point of 
view, too. 

7.2. The Failure of Sequential Order to Accommodate Baryons 

Sequential order is characterized by "twoness": each particle has two 
neighbors, a predecessor and a successor. This twoness was seen to manifest 
itself in the (q~) nature of mesons. So the fact that in the conventional quark 
models baryons are characterized by "threeness" (qqq) already indicates 
quite dearly that sequential order alone is not going to accommodate 
baryons. 

Nevertheless, we first tried to include baryons in a sequential scheme 
in two different ways before we saw ourselves forced to abandon the attempt. 

One of the schemes, the "diquark" model, tried to fit baryons into the 
framework of sequentially ordered amplitudes without any modification. 
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One simply postulated the existence of certain "baryon flavors," denoted 
by a wavy quark line. For example, in 

/ 3 0 ~  B M 

fl stands for baryonium, B for a baryon, B for an antibaryon, and M for 
a meson. In order to regain the conventional notation, one replaced 

by 

(hence the term "diquark" for the wavy quark line). This scheme failed 
completely. Besides being asymmetrical and ad hoe, it yielded the wrong 
spectrum. Furthermore, many processes like pK----~E-K § could not be 
expressed as diquark processes 

but only as 

so that the corresponding planar amplitude was forced to be zero; and yet 
experimentally these processes were not suppressed compared with processes 
that could be written as diquark processes. For all these reasons and others 
this scheme was rapidly abandoned. 

The other scheme, while still sequential in a sense, already required 
a broadening of this concept. It allowed for nonadjacent baryon-antibaryon 
pairs connected by a "mate line." Mate lines were not allowed to cross, 
and 

 'ft A 
Bz ~ B3 

M 2 M 3 
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were required to be "dead," i.e., no other particles such as mesons were 
allowed on them; e.g., 

B MI~M2 
is forbidden. This asymmetry of mate lines with respect to the other quark- 
lines was the price to be paid for the preservation of a well-defined sequential 
order, but it was also the main drawback of the scheme, leading to various 
undesired consequences. Besides, it was decidedly artificial and ugly. 

I f  we abandon the "deadness" of the mate lines and with it sequential 
order, then we arrive, by minimal generalization of sequential ordering, at 
the same scheme that we will in the following derive by the converse process" 
namely, starting from the most general order, we will use consistency re- 
quirements imposed by general SMT to exclude inconsistent types of order, 
and thus arrive at our theory by specialization (from the general to the 
special). 

7.3. The Key to Baryons and Other Hadrons: Generalized Order 

We now take the hint offered by conventional quark diagrams and 
represent baryons by three-vertices 

2 
while mesons continue to be represented by two-vertices as before. The 
example of baryonium indicates that there will be four-vertex particles 

in the theory, too. Indeed, as we will see, the presence of three-vertex particles 
in conjunction with the pole conjecture implies the existence of n-vertex 
particles for every integer n /> 2; the number of edges emanating from a 
particle vertex is of course a characteristic property of that particle. 

Once we include particles other than nonexotic mesons, as we now 
wish to do, we have to generalize the concept of order to accommodate them; 
sequential order can no longer achieve this. The most general kind of order 
amongst a set of objects is represented by a connected graph whose vertices 
represent the objects, and whose connectivity structure represents the order. 
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We exclude the possibility of "tadpoles," i.e., of a vertex connected to itself 
by means of an edge 

Note that a graph is topologically defined: it is only the connections between 
the edges that count, and not the particular way that the graph is drawn on 
the plane; e.g., the two graphs 

A 

B 
and 

A 

B 

are considered identical. 
We now postulate that every hadronic scattering process is ordered in 

the above, generalized sense: it is characterized, besides by the individual 
particle parameters (t~, p~, tz~), by an order represented by a process graph 
whose vertices represent the particles, each with its characteristic number of 
edges emanating from it. All edges in a graph have to be "saturated." That 
is, if a particle (such as a baryon) corresponds to a three-vertex, then that 
three-vertex actually has to be connected with three other particles (not 
necessarily distinct); 

A E C 

v 

B D 

is okay, whereas 

A E 

L B 
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is not, because it has an unsaturated edge. To each such ordered process 
corresponds an ordered amplitude expressing the probability amplitude for 
that process to happen, in the usual sense. 

Any bisection of a process graph into two connected subgraphs defines 
two ordered channels, graphically represented by the subgraphs that we call 
channel graphs. For example, the bisection 

,D 

E 

yields the channel graphs 

and 

When both the "in" particles by themselves and the "out" particles by 
themselves form a connected subgraph and hence define a bisection of the 
process graph, then we call that process an ordered transition. [We will 
start out by regarding ordered transitions only; the amplitudes for all other 
ordered processes can be obtained from ordered transition amplitudes by 
crossing, as in the sequentially ordered case.] For example, 

in 

ou! ~ in 

out 
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is an ordered transition, whereas 

in out,out 
in 

is not. 
All this is completely analogous to the sequentially ordered processes; 

the only difference is that we allow a more general kind of order now. 
So far we have only established the general outlines of the ordered 

SM framework. As it stands, it is far too general. What kinds of  particles, 
of all the possible ones, actually occur? What kinds of graphs, of all the 
possible ones, can actually occur as process graphs ? Which ordered channels 
communicate, or in other words, what characterizes an ordered sector? Is 
it possible to define a unitary, cluster-decomposable analytic ordered SM 
with pole factorizafion and crossing and the other properties of Part One, 
Section 3, in the context of generalized order ? 

It is these questions that we will examine in Section 9. And we will see 
that the general requirements of  SMT and generalized order tend to con- 
tradict one another; they can be made compatible only under special 
circumstances: if we introduce "color," and restrict ourselves to certain 
kinds of  particles and certain categories of process graphs. Thus the im- 
plementation of consistency between the general principles of SMT and order 
yields an "order bootstrap," the result of which is a specific theory that 
generalizes the sequentially ordered SMT of Part One. It continues to satisfy 
all the properties of Part One, Section 3, including duality, and predicts a 
zero-triality quark spectrum as observed in nature. 

Before we proceed with this, however, we wish to insert a section with 
all the concepts and results from graph theory that we will be needing in 
this work. 

8. DEFINITIONS AND FACTS FROM GRAPH THEORY 

8.1. Some General Concepts 

Graphs. A graph is a set of n vertices, some pairs of which are con- 
nected by lines. These lines are called edges. Every edge starts on a vertex 
and ends on another vertex. I f  one can pass from any vertex to any other 
vertex of the graph by moving along edges, the graph is called connected. 
A connected graph represents an order amongst its vertices. This order is 
topological in that it depends only on which of the vertices are connected 
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("neighbors"). Two graphs are considered equivalent if they consist of  the 
same vertices, connected in the same way (even if they are drawn on the plane 
in distinct ways, e.g., 

A 

B 

is equivalent to 

A two-vertex 

A 

B 

is often called a trivial vertex because its omission does not affect the con- 
nectivity structure of  the remaining vertices of  the graph. A one-vertex 

, /  
is called pendant. 

When a connected graph is cut into two connected subgraphs we call 
the cut a bisection. The subgraphs are strictly speaking not graphs because 
the free edges (that were cut by the bisection) do not end in a vertex; neverthe- 
less we call them graphs here (we refer to them as channel graphs). Two 
channel graphs obtained by bisection of a graph G are called cographs with 
respect to G. 

A directed edge starts on one vertex and ends on another; this is denoted 
by an arrow: 

A graph all of whose edges are directed is called an oriented graph. A vertex 
with the property that all edges impinging on it are either directed towards 
it or away from it, e.g., 
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o r  

is called an oriented vertex. A graph whose edges can be directed in such a 
way that all vertices are oriented is called vertex orientable or bipartite. 
A graph is bipartite if and only if the vertices can be classified into two sets 
in such a way that any vertex from one class is directly connected only to 
vertices f rom the other class. And this is the case if and only if  every closed 
loop of  the graph contains an even number of oriented vertices. 

A graph is called n-eolorable if  and only if  each edge can be assigned 
one of  n (and not less than n) colors in such a way that no two adjacent 
edges (i.e., edges that come together at a vertex) are assigned the same color. 
For  example, 

is 3-colorable, whereas 

is not; however, it is 4-colorable. 
A graph is called planar if  it can be drawn on a plane (or sphere) without 

any crossing of lines. A graph is called cubic i f  it contains only three vertices. 
Given a channel graph, such as 

S 
we can contract away all internal edges, exhibiting only the free edges 

X 
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The converse operation is called expansion. For example, any n vertex with 
n i> 3 can be expanded into a cubic tree graph. This fact exhibits the special 
role of the three-vertex in graph theory and hence presumably the reason 
for the existence of three colors; for the statement "any vertex can be 
expanded into a tree graph consisting of n vertices only" is true only for 
n = 3 .  

An important concept is that of the spanning tree of a graph. Given a 
graph G, if we successively eliminate all trivial vertices 

and all tadpole edges 

then we obtain a tree graph that is called a spanning tree of G. In general 
there will be several spanning trees for one and the same graph, depending 
on the order in which edges are eliminated. Graphs that have only one 
spanning tree are called uniarboral. For example, if G = 

, o - , ,  " , 4 3  , ,o II 

2 8 9 2 8 9 

' / ' s  ; 6 7 IO II ~ s  Z IO ~4 

= 

II 

2 2 

4 

2 

II 

we get the same spanning tree for any order of reduction. Hence, G is 
uniarboral. 
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The set of all spanning trees of a graph, its so-called spanning forest, 
characterizes the graph except for the positions of trivial vertices 

J 

and "necklaces" 
/ - ' x  

both of which do not affect the connectedness structure. In other words, 
given the spanning forest of a graph, we can reconstruct the graph itself 
uniquely except for trivial vertices and necklaces, by simple superposition, 
uniarboral channel graphs are going to play a crucial role in ordered SMT. 

A somewhat related, but more specialized, concept is that of  reduction. 
If  in a graph G any two vertices are connected by more than one edge, then 
if  we erase all but one of these edges and eliminate the resulting trivial vertices, 
we are said to have performed a reduction: 

When a graph can in a finite series of such reductions be reduced to a circle, 
it is called reducible. Conversely, of course, every reducible graph can be 
constructed starting from a circle and successively replacing edges 

with "necklaces" 

Examples of reducible graphs are 

o r  

o r  

�9 "�9 " 0  
�9 . �9  - �9  . � 9  
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On the other hand, 

o r  

Weissmann 

H 

are not reducible. 
Since cubic reducible graphs are going to play a central role in ordered 

SMT, we now examine their properties more closely. 

8.2. Cubic Reducible Graphs and their Properties 

Mate Structure. In a cubic reducible graph (CRG), there exists to 
every vertex V another, uniquely defined vertex V, called its mate, with which 
V is contracted in the course of the reduction. It is easy to see that the vertex 
V with which a given vertex V is contracted away in the reduction does not 
depend on the order in which the steps of  the reduction are performed; 
hence the mate is well defined. 

If, in particular, for given vertex V, we reduce away all the vertices that 
can be reduced while leaving V intact, then we arrive at the graph 

V 

@ 
7 

m 

Obviously, if 172 is the mate of V1, then V1 is the mate of V2: V = V. 
We call (V, V) a mate pair. 

For any mate pair (V, V) of a cubic reducible graph G, G can be repre- 
sented in the form 
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where the blobs stand for subgraphs that can be reduced down to a line, 
e.g., 

+ 
From this representation it is easy to see that every closed path starting 

out from a vertex V by one edge and finally returning to V along one of  the 
other two edges has to pass through V; and furthermore, F is the only vertex 
that has this property with respect to V. Conversely, this property 
characterizes reducible graphs. 

Bipartiteness. By construction every closed loop of a CRG contains 
an even number of  vertices; hence we can divide the set of vertices into two 
subsets B and /~  in such a way that a vertex from B is only connected to 
vertices from /~, and vice versa: thus all CRGs are bipartite. If  a vertex 
V ~ B, then its mate V ~ B; and if V E B, then V ~ B. From this it immediately 
follows that the number of  vertices in B equals the number of  vertices in 

for every CRG:  #(B) = #(B). 
Since bipartiteness is equivalent to vertex orientability, every CRG can 

be oriented (i.e., an arrow attached to every edge) in such a way that all 
vertices are oriented, either 

Y 
o r  

V 
The former vertices by convention form B, the latter/1, e.g., 
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Three-Colorability. It is easy to see that a CRG is always three- 
colorable: such a graph can be constructed from a circle 

by successively substituting 

�9 

- 0 

so we color this circle with one of  three colors, and then substitute 

2 
i by l 0 i 

3 
I 

2 by z O 2 

3 

and 

I 
3 by 3 O 3 

2 

successively until the desired CRG is constructed: it is then by construction 
consistently colored with three colors such that no two adjacent edges have 
the same color. 

Planarity; Spherical Representability. By construction it is clear that 
a CRG is planar: it can be drawn on a sphere or plane without crossing of  
edges. 

Regard a three-colored CRG. Then there are various different ways 
that it can be drawn on a sphere, all corresponding to the same graph. 
For  example, 

V 

V 

can be drawn on a plane in the following distinct ways: 

V V V V V V 

,0,0 
7 ~ V 7 7 ~ 
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On a sphere there are only two different representations, namely, 

v 

'0 
and 

since, e.g., 

V '0 
7 

V V V 

0 ,0 -  ,0 
We can use this redundancy of  the spherical representation to express 

nearly all the color information of  the CRG. We first note from the repre- 
sentation v 

'0 
7 

that if a vertex V is clockwise oriented 

(y) 
then its mate V is counterclockwise oriented: 

Otherwise there is no limitation on the relative orientations of  vertices: thus 
in drawing the graph of  a sphere we can, e.g., freely choose the clockwise 
(or, respectively, counterclockwise) orientation of  every B-vertex (the orienta- 
tion of  the /~  vertices is then automatically determined). We can therefore 
by convention always draw a colored CRG on a sphere in such a way that 
all B vertices are clockwise, all B vertices counterclockwise oriented. I f  we 
follow this convention then we need only specify the color of  one single 
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edge of the whole graph (and its direction) in order to know the color (and 
direction) of every edge of the graph. For example, 

A 

D 
represents 

A 

D 
We will not make use of this spherical representation in this work, although 
it played quite an important role in the evolution of our scheme and is useful 
for the topological expansion (Sursock, 1978). 

8.3. Cubic Reducible Channel Graphs 

When we perform a bisection upon a cubic reducible graph, the resulting 
two subgraphs are called cubic reducible channel graphs (CRCG). 

Examples of CRCGs: 

/obtained e.g. frorn ( ~ )  
I 
I 

A (,-~.,,~ -0-) 
A(~~ ,ro. ~ )  



Particle Order: A New Fundamental Concept 869 

It is apparent from these and other examples, and can easily be shown 
generally, that every CRCG has the form of a tree graph with reducible 
"blobs" inserted on the internal and free edges. For example, the first 
example above is of the form 

r 
the second and third of the kind 

and the fourth of the form 

t 

We say that the first CRCG has the skeleton l, the second and third have 
the skeleton 

the fourth one the skeleton 

Since for the reducible graphs the operations of reduction and of con- 
structing the spanning tree are identical, the skeleton of a CRCG coincides 
with its spanning tree. CRCGs are uniarboral; indeed, the property that any 
bisection of the graph leads to subgraphs that are uniarboral characterizes 
reducible graphs; this fact underlies the physical importance of reducible 
graphs. 

As we saw above, the skeleton of a CRCG is a cubic tree graph obtained 
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by complete reduction of the CRCG. The number of vertices of the skeleton 
equals the number of  mate pairs that were separated by the bisection that 
generated the channel graph in question (all the unseparated mate pairs 
get eliminated in the reduction); the number of  free edges of a CRCG, 
and hence of its skeleton, is n + 2 if the number of vertices of the skeleton is n. 

We have seen that every CRCG can be transformed by reduction into 
a tree graph, its skeleton. Conversely, every channel graph with this property 
can be obtained by bisection of an appropriate CRG, and is thus by definition 
a CRCG. The simplest way to see this is to take the channel graph in 
question, e.g., 

take another, identical one and then join the two by their corresponding 
free edges; e.g., 

the result is a CRG. 
The set of all CRCGs can be categorized according to their skeletons 

into skeleton classes. 
Two CRCGs obtained from a CRG by bisection always belong to the 

same skeleton class. Thus two CRCGs from different skeleton classes can 
never be joined to form a CRG. On the other hand, as we saw above, two 
CRCGs from the same skeleton class can always be joined to a CRG. This 
joining can in general be performed in more than one way. For example, 
the two CRGs 



Particle Order: A New Fundamental Concept 871 

can be joined up in 3! = 6 different ways to the C R G  

@ 
and the two CRGs  

can be joined up in eight different ways to the C R G  

As a result the resewing  of  two CRCGs  obtained by bisection of  a C R G  
is not unique: given the two CRCGs,  we have no way of  knowing in which 
way they were joined before the bisection, and so we cannot resew them to 
the original CRG.  

A little reflection shows that the source of  this ambiguity is the presence 
of  nontrivial automorphisms on a CRCG.  An automorphism on a graph 
is a mapping that maps each vertex of  the graph into a vertex of  the graph 
and each edge into an edge in such a way that the topological relations are 
preserved: if and only if a vertex V lies on an edge e does the image of  V 
lie on the image of  e. Thus, e.g., the C R C G  

has six automorphisms: V---~ 11, el --~ el, e2 --~ e2, ea --~ ea (the trivial auto- 
morphism);  V - - ~  V, e l  ~ e l ,  e2 ~ e3, ea ~ e2, V - - ~  V, e~ --~ e2, e2 --~ e3, 

e3 --~ e~ . . . .  , etc. I t  is the presence of  these six automorphisms that leads to 
the sixfold ambiguity of  resewing 
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with 

And similarly with the other example above. 
Three-Colored, Vertex-Oriented CRGs. We mentioned before that 

CRGs can be vertex oriented and also three-colored. We now examine some 
properties of  vertex-oriented and three-colored CRGs. 

Every bisection of such a graph yields two vertex-oriented, three-colored 
CRGs, each with a skeleton that is now also vertex oriented and three, 
colored; these two skeletons are identical in topological structure and color. 
but they have opposite vertex orientation. They are called conjugate skeletons. 

As an example we have 

and 

A 

B 

with the skeletons 

/ 
/ 

(biseciion)~ 111G~ I 

B L 

2 

y \ 2  
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and 

Another example is 
A 

with the skeletons g 

and 

, / \ 2  

(bisection) 

Note that the skeletons 

and 

are distinct (color), as are 

and 

y \ 2  

Y 
(orientation: the latter pair is conjugate). 

D 
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Two vertex-oriented, three-colored CRCGs can be joined to form a 
vertex-oriented, three-colored CRG if and only if their skeletons are con- 
jugate. But, unlike before, they can be joined only in one unique way! This 
fact will be of crucial importance when we apply all this to physics. It implies 
that if we bisect a vertex-oriented, three-colored CRG, then the resulting 
channel graphs can be resewn in exactly one way to a CRG (namely, the 
original one). The reason for this is that for a given vertex-oriented, three- 
colored CRCG there is no automorphism but the trivial one (note that now 
an automorphism is also required to map an edge of any color into an 
edge of the same color, and if an edge e begins (ends) on a vertex V, then 
the image of e must begin (end) on the image of V). 

9. THE ORDER BOOTSTRAP: CONSTRUCTION OF THE 
GENERALIZED ORDERED S-MATRIX THEORY 

9.1. Some General Features of S-Matrix Theory and the Restrictions 
they Impose upon the Possible Forms of Order 

In Section 7 we set up the general framework of ordered SMT, but we 
remarked at the end that it was too general and required a definite form, 
i.e., a specification of which graphs represented possible structures of particle 
order, and of the nature of the particles themselves and of the sectors they 
formed. This we are now about to do. The tool we want to use to achieve it 
is compatibility of order with the general features of SMT. As we will see, 
considerations of this type will suffice to determine the form of the theory 
completely. 

9.1.1. Unique Resewing. In Section 3.2 of Part One, we have already 
explained that in an ordered SMT the initial channel graph and the final 
channel graph should determine a definite process graph. Since this implies 
that two channel graphs obtained from bisection of a process graph should 
be resewable in a unique way, we called this the criterion of "unique re- 
sewability." Already there we saw that this criterion necessitated the orienta- 
tion of graph edges in order to construct a consistent sequential theory. 
Here, for generalized order, the implications are even further reaching. 

Since the problem of resewing boils down to which pairs of free edges of 
the two channel graphs should be joined, the criterion of unique resewability 
can be formulated in terms of an appropriate labeling procedure for the 
free edges of a channel graph. In order to determine the unique and correct 
way of matching up the free edges of the two channel graphs, the labeling 
of the free edges must have the following properties: 
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(i) The labeling must be determined by the structure of the channel 
graph itself, without reference to the co-channel graph with which 
it formed the process graph before bisection. 

(ii) The labeling must be such that each free edge receives a distinct 
label distinguishing it from all other free edges. 

(iii) Two channel graphs obtained by bisection of  a process graph 
should receive identical labels on free edges that were joined 
together. 

9.1.2. Closure of the Set of Channel Graphs under Bisection and Resewing. 
Given a legal process graph G (i.e., one with a nonzero ordered amplitude), 
then every bisection of  G yields two legal channel graphs (corresponding to 
interacting ordered channels). Each of  these can be sewn together with any 
communicating channel graph, and in particular always with one identical 
to itself to form a new legal process graph; this in turn can be bisected in 
every possible way to form a new set of legal process graphs, etc., etc. The 
set of  legal process graphs must be closed under the operations of bisection 
and resewing. For example, if 

A 

B 

is legal, then 

A 

B 

is a legal channel graph, and hence 

A 

0 
[3 

a legal process graph, and hence 

A 

[3 

0 
v 

A 

B 
A 

\ 
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is legal, and hence 

is legal, etc. 

_A B 

B 

9.1.3. The Particle-Pole Identity and Some of  its Consequences: Com- 
posability, Coeonneetedness, Confinement. In SMT every external particle t 
of a scattering process A may be regarded as an internal particle (pole) 
connecting A with another scattering process B to a joint (double-scattering) 
process(A t B). 

In ordered SMT all these processes A, B, A t B, are ordered. The 
order of (A t B) is obtained from that of A and B by bisecting out the 
particle t from the process graphs of A and B and then sewing together the 
resulting channel graphs (according to Section 9.1.1 this can be done in a 
unique way). 

A consequence of this is the composability of process graphs: any two 
(legal) process graphs that both contain a given particle A can be composed 
to a larger process graph by erasing that particle vertex A in both process 
graphs and joining the corresponding free edges. The same is true if we 
replace the word "particle A" by "ordered channel." 

Another consequence of the particle-pole identity is that every legal 
process graph must be coconnected: it must have the property that erasing 
any particle graph leaves the remainder of the graph connected; i.e., each 
particle corresponds to a bisection (this is because poles occur only in channel 
variables corresponding to bisections of the process graph, as we saw in 
Part One). This eliminates graphs like 

A D 

B E 

that are held together by one single particle. It also eliminates the possibility 
of particles corresponding to one-vertices (pendant vertices), except possibly 
in trivial process graphs like 

This is because the particle to which the pendant vertex is attached cannot 
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be erased without disconnecting the pendant vertex from the rest of the 
graph, e.g., 

A B 

0I 
D C 

(A holds graph together). Since pendant vertices would, if they existed, be 
identified with free quarks (as we shall see), this implies the "confinement'" 
of quarks. 

9.1.4. Triviality of the Two-Vertex. In graph theory a two-vertex is 
considered trivial and can be omitted or inserted on any edge without altering 
the topological structure of the graph. We therefore assume that if we omit 
or insert appropriate trivial vertices on the edges of legal process graphs we 
again obtain legal process graphs. This leads to a strengthening of the 
restriction imposed by Section 9.1.2, e.g., 

legal ~ ~) legal " (~' legal 

,' (~- legal ~" 0 0 legal ~- 0 0 legal 

it 

9.1.5. Particle-Sector Correspondence; the Pole Conjecture. We noted 
in Part One the close correspondence between particles and sectors: to 
every particle corresponds a unique sector (set of communicating channels) 
with which it communicates; conversely, every sector contains a set of 
particles (according to the pole conjecture this set is nonempty), differing 
from one another only by their space-time quantum numbers m, s, P, but 
with identical graphical representations and flavor structure. This set of 
particles is characteristic of the sector. 

So far we have left somewhat vague the question as to how particles 
are to be graphically represented in the theory, maybe raising the impression 
that they can all be represented as vertices. However, we now note that 
although that may be true for some particles (the mesons of Part One were 
one example; baryons and antibaryons will be shown to be another), the more 
general statement is that particles should be graphically represented in the 
same way as sectors. If, e.g., all ordered channels with n free edges commu- 
nicated with one another, then a sector would be completely characterized 



878 Weissmann 

by how many free edges the channel has; under these circumstances, and 
only under these, could a particle with n free edges be represented as a 
(structureless) n-vertex. But we will soon see that this is not a consistent 
assumption, and that particles with more than three free edges cannot be 
represented as simple vertices, but instead are represented by tree-graphs, 
because sectors are represented by tree graphs (spanning trees). 

For now, we just note that the problem of particle representation is 
tied up with the problem of sector representation in a circular way: in order 
to even define channel graphs and sector graphs, we need the particle graphs 
out of which they are constructed; but we only know the particle graphs 
once we have worked out the way that secto'rs are to be represented. We 
work our way out of this dilemma by starting our construction only with 
particles that can definitely not be represented in any other way than as 
simple vertices, namely, two-vertex particles and three-vertex particles (so- 
called nonexotic particles). Having built up the theory with these particles 
alone, and worked out the rules governing sectors and their representations, 
all the other particles are delivered into our hands effortlessly. 

9.2. The Order Bootstrap 

9.2.1. Color. Let us regard the simplest nontrivial vertex, the three- 
vertex; unlike higher vertices, it cannot be expanded into simpler vertices 
(see Section 2.1). Let us assume there exists a particle with the particle graph 

Z, 
As we saw, the criterion of unique resewability demands that all the three 
free edges of this graph be distinguishable; they therefore have to be labeled, 
and this label is an intrinsic property of the edge. We call this label topological 
color or just color. We wish to stress that we are using this term in the sense 
of graph theory (as in "four-color-theorem"), and not in the sense of QCD; 
although the concepts will turn out to be related, they are not identical. 

Thus the edges of every three-vertex particle graph receive a distinct 
color label: 

in a process graph containing only such particles all edges are colored in 
such a way that no adjacent edges have the same color. When we resew 
two channel graphs to a process graph, only free edges of the same color 
can be joined. 
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What about two-vertex particles? Any two-vertex particle that is 
generated as a pole in an ordered channel consisting of three-vertex particles, 
e.g., 

o r  

is obviously of the kind 

I "5 

2 2 

:t r e s p  

with both edges of the same color. 
But could there exist two-vertex particles with two differently colored 

edges, like 

The answer is no; for if there were, then channel graphs like 

would exist, and with them (pole-conjecture) particles like 

whose edges are not distinguishable, which would defeat the very purpose 
for which color was introduced. Thus two-vertex particles have to be of the 
kind mentioned before: 
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and by the pole conjecture these particles certainly exist if the three-vertex 
particles 

exist. 

9.2.2. The Orientation of Edges and Vertices. Now, however, we seem 
to be in serious trouble, for two-vertex particles 

etc., necessarily occur in the theory, but apparently violate the criterion 
of unique resewability, since the two free edges cannot be distinguished. 

But there is a solution to this dilemma, a solution that is immediately 
suggested when we recall that this generalized ordered SMT is to be a 
generalization of the sequentially ordered SMT. For there we saw that edge 
orientation is a necessary feature of the theory, providing the distinction 
between the two edges of a particle that is necessary for unique resewability: 
a two-vertex particle is necessarily of the type 

We therefore postulate that all edges are oriented, and that two-vertex 
particles are of the nature 

't :t I , 2 , 

They indeed merit the name "trivial vertices" since their insertion or omission 
alters neither the orientation nor the color of an edge. We will call these 
particles (nonexotic) mesons. Particles of the type 

t: 
are forbidden for the same reasons as we introduced edge orientation before. 
And particles like 

t' 2 
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would, through the formation of a channel such as 

lead to the existence of the forbidden particles 

't 3 

and are thus also eliminated. The only allowed two-vertex particles are thus 
the above trivial vertices 

I I 2 2 3 3 

We have deduced the necessity for edge orientation by regarding mesons. 
We could just as well have proceeded by looking at channel graphs of the 
kind ,? 
Here again the demand of unique resewability leads to the necessity of 
orienting the edges, this time directly in terms of the free edges of three- 
vertex particles, because there is again a nontrivial automorphism, mapping 
the two vertices into one another. Similar considerations can be invoked to 
confirm that indeed all edges have to be oriented, not only those of two-vertex 
or three-vertex particles, just as all edges have to be colored. 

A priori there could be four types of three-vertices: 

2 ,A,A,A 
But if vertices of the three type existed, it would lead to channels of the 
type 

2 3 

and hence of particles 

t l I 
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of the forbidden kind; and the fourth type of vertex would similarly lead to 
forbidden particles like 

Therefore only three-vertices of the first two kinds can exist. We call 

a baryon vertex, and 

an antibaryon vertex, and the corresponding particles baryons and antibaryons. 
Obviously, as the trivial process graph 

B 

'0 
shows, antibaryons are the antiparticles of baryons: it describes a baryon B 
going into itself. More generally, charge conjugation of an ordered state 
converts the channel graph into the conjugate channel graph, obtained by 
reversing the orientation of all the edges. In the bra-ket formalism, a process 
graph like 

A I E 

B C 1 D 
I 

in out  

refers to a transition from a bra with a channel graph 
A 

B C 
to a ket with channel graph 

E 

r - 

B 
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i.e., the conjugate of the channel graph 

E 

D 

obtained by bisection of  the process graph. This is again just as for the 
sequentially ordered SM, so we do not elaborate any further. 

9.2.3. The Nonexistence of Simple n Vertices for n > 3: All Process 
Graphs Are Cubic. The next question we ask is whether the existence of  
particles corresponding to simple n vertices, with n > 3, is compatible with 
the existence of baryons. Let us assume that such a particle existed, say for 
n = 4. Its particle graph would then be 

X 
where the edges still have to be colored and oriented. We first note that for 
the same reasons as for three vertices, all the edges have to be oriented 
towards or away from the vertex: either 

o r  

but not, e.g., 

>( 

X 
Therefore, in order to distinguish the edges, we need four colors. 

:X: 
But then there would also exist baryons such as 
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and hence ordered channels like 

2 aC>' 
3 

As a result there would have to exist particles like 

4 I 

which are forbidden. Thus the existence of  more than three colors is in- 
compatible with the existence of baryons, and so simple n vertices with 
n > 3, are ruled out. 

This does of  course not rule out particle graphs with more than three 
free edges. On the contrary, we know, owing to the pole conjecture, that 
corresponding to channel graphs such as 

and 

etc., there will be particles whose graphs have any number of free edges. 
But we have now seen that the particle graphs of  these particles cannot be 
simple vertices such as 

etc. We will soon see how these "'exotic" particles are to be graphically 
represented. At any rate, since simple n vertices for n > 3 do not occur, 
and two-vertices are trivial, all process graphs are necessarily cubic. 

9.2.4. Cubic Reducible Graphs: The Set of Legal Process Graphs. We 
have established that process graphs are necessarily cubic, three colored, 
and vertex oriented, and consist of  baryon vertices, antibaryon vertices, 
and trivial vertices. But can every graph with these characteristics be a process 
graph of some ordered process, or are there further restrictions on the 
possible forms of process graphs? 
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A simple example shows us that the latter is the case. Regard the "cube 
graphs" 

A 3 B 

D C 3 

bisected as shown; this yields the two channel graphs 

X 
and 

We see that there are two ways of resewing these channel graphs, one yielding 
the original process graph, and the other 

AA 

w 

D 

the existence This corresponds to 
channel graph 

A B 

2 

C 

of a nontrivial automorphism on the 

X 
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mapping A into C and vice versa, and B into D and vice versa, and the 
edges correspondingly. 

Since this violates unique resewability, such process graphs are ruled 
out, indeed every process graph containing 

with any color assignment of edges, as a channel graph is ruled out. And for 
similar reasons all channel graphs with such ""loops," such as 

etc., are also rules out (those with an odd number of vertices are ruled out 
anyway by bipartiteness). The only exception is the two-vertex loop 

that we have already recognized as a legitimate channel graph, as it poses 
no problems with respect to unique resewing. 

So as at least some cubic bipartite, three-colored graphs are forbidden, 
the question poses itself: Which process graphs are allowed? 

To answer this question, we first use the general properties listed at the 
beginning of this section to establish a minimal set of process graphs, which 
have to occur: the cubic reducible graphs. And then we show that this is 
the complete set: there are no other process graphs than these. 

Starting from the legal channel graphs (particle graphs) 

A 
and 

A 
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we can certainly (by Section 9.1.2) form the process graph 

@ 
and (by Section 9.1.4) insert any number of trivial vertices on the edges, 
e.g., 

@ 
By Section 9.1.3 we know that we can compose two such process graphs, 
e.g., by one of their trivial vertices 

@ 
to form the process graph 

5 

I 2 I 2 

5 

which is thus also legal. Again we can insert a trivial vertex on any edge and 
compose this graph with the graph 

@ 
In this way we can insert "necklaces" 

repeatedly on any edge, and so (see Section 8) any cubic reducible process 
graph is legal. And every bisection of a cubic reducible process graph yields 
a legal channel graph. 

In Section 8 we examined the properties of vertex-oriented, three- 
colored cubic reducible graphs, and saw in particular that they satisfy the 
criterion of unique resewability. If  this had not been the case, our whole 



888 Weissmann 

general ordered SM approach would have failed, since the minimal class of 
process graphs would have failed to satisfy a basic requirement. As it is, our 
theory passes an important consistency test. 

Specifically, we saw in Section 8 that any bisection of a three-colored 
vertex-oriented cubic reducible process graph yields two channel graphs 
with conjugate skeletons (in the bra-ket formalism, where the "out" channel 
graph is charge conjugated, the skeletons are identical). Conversely, any 
two such channel graphs can be sewn together to a cubic reducible graph 
if and only if they have conjugate skeletons, and then only in one unique 
way. This implies that all ordered channels from the same sector have the 
same skeleton; the skeleton characterizes an ordered sector. As we saw, 
skeletons are oriented and three-colored. In Section 10 we will additionally 
attach flavor labels to the free edges of skeletons. Such flavor-labeled skeletons 
fully characterize a sector, and hence also particles, in the sense that there 
is a one-to-one relation between ordered sectors and flavor-labeled skeletons. 
Without the flavor labels there is a set of sectors corresponding to each 
skeleton. 

Thus reducible graphs certainly fulfill all the requirements of legal 
process graphs; the question remains whether there is a bigger class of 
graphs that also does. The answer is: no. Any three-colored, vertex-oriented 
cubic graph that is not reducible contains channel graphs of the kind 

% 
I 

etc., which we have seen to be forbidden; this is connected with the fact 
that reducible graphs are just the ones with the property that all channel 
graphs have unique spanning trees. 

To summarize: ordered processes can have only process graphs that 
are three-colored, vertex oriented, cubic reducible process graphs; and con- 
versely every such graph corresponds to a possible process graph of some 
ordered process. So far we have only regarded processes with particles 
corresponding to simple vertices: baryons 

antibaryons 
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and mesons 

Now we complete the foundations of the theory by introducing the full 
hadronic spectrum generated by self-consistency requirements. 

9.3. Some Other Properties 

9.3.1. The Full Hadronie Spectrum. According to the pole conjecture 
every ordered channel communicates with at least one pole (particle). Any 
two ordered channels from the same sector communicate with the same set 
of poles, which establishes the correspondence between sectors and particles 
noted at the beginning of this chapter. Since sectors are characterized by 
skeletons, the same is true for particles: to every particle corresponds a 
three-colored, vertex-oriented tree graph, the skeleton, which we call its 
particle graph, and conversely to every such tree graph corresponds a set of 
particles differing from one another only in mass, spin, and parity, that are 
said to form a skeleton class of particles. 

We list the simplest and most important skeleton classes of particles: 
nonexotic mesons, with skeletons: 

nonexotic baryons, with skeleton: 

2,- 
and antibaryons: 

A 
baryonium (exotic mesons): 
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exotic baryons: 

and antibaryons: 

each in three colorings, 
one "deuteron": 

Y 
A 

etc. 
The spectrum represented by all such cubic tree graphs is complete; 

no other particles are compatible with the structure of the theory. Note 
the zero-triality nature of the spectrum: the number of edges directed away 
from the particle graph minus the number directed towards it is always a 
multiple of 3. With the identification of directed edges and "quarks" this 
feature will, in conjunction with the introduction of edge flavor, lead to 
the usual quarklike hadron spectrum predicted by quark theories. But in 
addition to the nonexotic mesons and baryons we obtain a well-defined set 
of exotic particles, the simplest of which, baryonium, may already have been 
found, and which will provide one of the crucial tests of this theory. 

All these particle graphs can be combined in the usual way (colors 
and orientation of the free edges joined together have to match) to process 
graphs. We only demand that the resulting graph be reducible, and co- 
connected. The latter demand was automatically fulfilled as long as we were 
dealing only with particles corresponding to simple two-vertices and three- 
vertices: the removal of any such vertex still leaves a reducible graph 
connected. With the inclusion of exotic particles this is no longer guaranteed, 
so we have to mention it explicitly. For example, the process graph 
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connecting a baryonium .4 with several nonexotic mesons, is iUegal, since 
removal of the baryonium, indicated here by 

,,/t. / 

leaves the graph disconnected. This explains why baryonium cannot, at the 
ordered level, decay into a purely mesonic channel. This example also demon- 
strates the way we graphically indicate exotic particles in the context of a 
process graph: we surround the particle graph with a dotted line so that it 
is apparent that this represents one particle, and not a collection of baryons 
and antibaryons. Another example of a process graph containing exotic 
particles is 

/ 

9.3.2. Baryon Number Conservation. The number of baryon vertices 
minus the number of antibaryon vertices in a particle graph or channel graph 
is called the baryon number of that particle or channel. It is apparent that the 
baryon number is additive: the baryon number of a channel is the sum of 
the baryon numbers of the component particles. And since there is always 
an equal number of baryon and antibaryon vertices in a reducible cubic 
graph (see Section 2), the baryon number of the "in" channel is equal and 
opposite to that of the "out" channel; in the bra-ket notation the two 
numbers are equal. Thus baryon number is conserved. 

9.3.3. The Generalized OZI Rules. In its most general form the OZI 
rule says that if, given a set of particles, no legal process graph containing 
these particles can be constructed, then any ordered amplitude with these 
particles as external particles is zero, a truly trivial statement. Since the 
planar approximation to the SM is then also zero, and to the extent that it 
is a good approximation to the physical SM, physical amplitudes with such 
a set of particles would then be suppressed. 

For example, we saw that baryonium cannot decay into a purely mesonic 
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channel, because one cannot construct a channel with a baryonium skeleton 
from nonexotic mesons. Similarly, a particle from the skeleton class 

cannot decay into a baryon 

and mesons 

Y 
even though baryon number conservation would allow it. Another example 
is provided by 

which cannot decay into two baryons, a fact that makes its identification 
with the physical deuteron dubious; instead, it may, for example, decay into 
three baryons and an antibaryon. For the sequentially ordered SM there 
was no analog of these selection rules, since there all particles have the same 
skeleton 

t 
(if we ignore flavor). 

With the introduction of flavor, the OZI rule implies a whole class of 
selection rules analogous to those of Part One, as will be seen in Section 10. 
These selection rules often rule out processes at the ordered level that would 
be allowed according to quantum number conservation alone. 
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9.3.4. Why Are There Three Colors? We saw earlier that the existence 
of more or less than three colors is inconsistent with the existence of three- 
vertex particles 

), 
so, postulating the existence of such particles, and the general requirements 
of SMT, we were able to arrive uniquely at the theory described above. 

However, if we relax the demand that three-vertex particles exist, then 
there appears to be no a priori reason why theories analogous to this one, 
but containing a different number of colors, should not be self-consistent. 

For example, a two-color theory would contain "baryons" 

antibaryons 

and mesons 
t l B 

2 

Any process graph constructable from these particles would be legal, e.g., 

etc. 

M3 I ~ Mz I M~, 

M I I B M I I M 4 

Theories with more than three colors have to be restricted to reducible 
graphs, as in the three-color theory; the process graphs of an n-color theory 
consist of "baryonic" and "antibaryonic" n-vertices like 

and trivial vertices 
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The spectra are infinite, consisting of all possible tree graphs constructable 
from n-vertices. However, there are certain inelegancies in these theories, 
connected with the special role of the three vertex in graph theory. Since we 
have not completely worked out the arguments, we do not elaborate further 
here. 

J. P. Sursock, using a related formalism, makes an interesting argument 
in favor of three colors, also based on the special graph-theoretical role of 
the three-vertex (Sursock, 1978). 

In summary, there exist theoretical arguments in favor of three colors 
but a rigorous proof has yet to be developed. The important point is that 
within this framework the prospects for such a proof look promising. 

9.3.5. Are Baryons More Fundamental Than Other Part-ides? Con- 
sidering the fact that all particle graphs are composed of baryonic and 
antibaryonic vertices, which themselves form the particle graphs of baryons 
and antibaryons, one might be tempted to think that baryons and antibaryons 
are the fundamental constituents out of which all other particles are made. 
Even mesons can be constructed out of baryonic and antibaryonic vertices, 
as the graph 

shows (although this graph is not a tree graph, unlike all other particle 
graphs constructed out of baryonic and antibaryonic vertices). This would 
contradict the SMT principle of "nuclear democracy," according to which 
no hadron is more fundamental than any other hadron, and no '"fundamental 
constituents" or elementary hadrons exist out of which all others consist; 
instead, to the extent that the concept of "'consisting of" makes any sense 
at all at this level, one could say that each hadron consists of all other 
hadrons. It can be shown that '"consisting of" is a concept that strictly 
speaking only makes sense in the nonrelativistic limit, when the "binding 
energy" is small compared to the rest energy. 

It is easy to see that the interpretation of baryons and antibaryons as 
fundamental constituents is wrong, and that in ordered SMT nuclear 
democracy holds with a vengeance, since the new aspect of order allows a 
very graphic description of the seemingly paradoxical statement that "every 
hadron is composed of all other hadrons." 

To see this, we remember the intimate correspondence between particles 
and sectors. Any particle regarded as a one-particle channel, communicates 
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with all other channels of that sector, and can be considered to "consist" 
of the particles of any of these channels. For example, a particle with skeleton 

Y 

"consists" of two baryons and an antibaryon (as the graph 

shows) or a baryonium and a baryon 

/I 

or of three mesons, four baryons, four antibaryons, two baryonium, and a 

Y 

\,\ ~I 

B 2 , 

B Z  

( 
B4~ 

f 

/ / 

. /  
J 

:/ B 3 M 2 M3 

IB6 ~ .  
B s ~,, 
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Similarly, a baryon "consists" of a baryon and two mesons 

Y 
or of two baryoniums, an exotic antibaryon, a meson and two baryons 

B I 

/ f "  ,,,\ 
/ \ 

We see from these examples that baryons are no different from any 
other hadrons; all hadrons can indeed be regarded as composites of other 
hadrons. Particles, even those representable by simple vertices, are not 
irreducible entities, but categories of order. Order amongst what ? One might 
give a circular answer so typical of SMT and say: order amongst the other 
particles it reacts with. 

But we suspect that there is a deeper aspect to this of which we have had 
only glimpses and intimations. What do the vertices stand for; what do they 
represent? Our original idea that there was a one-to-one relation between 
vertices and particles, that the former represented the latter, has proven 
oversimplified (the statement is true only for mesons and baryons, but not 
for exotics) although there obviously is some connection between them. 
Rather, particles correspond to order categories (i.e., skeletons) between 
sets of fundamental vertices 

and 

And so how are we to understand vertices themselves? At the end of 
this work we will attempt some rather vague speculation about their meaning, 
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but at this point we admit that their physical interpretation, as well as that 
of the order between them and the connection between ordered and physical 
SM, is still largely mysterious. 

10. THE PROPERTIES OF THE ORDERED S MATRIX 

In Section 9 we determined the form of order compatible with the 
principles of SMT, and developed the features novel to generalized order. 
Here we present the axiomatic structure of the theory, its resulting S-matrix 
properties, duality and quark-model properties, its symmetries, and the 
planar SM approximation to the physical SM. Thus this section, in the 
context of generalized order, covers the ground of Sections 4-6 of Part One. 
As will be seen, all the features of the sequentially ordered SM presented 
there will survive the transition to generalized order, albeit occasionally in 
somewhat modified form. This circumstance, coupled with the fact that the 
ordered SM passes stringent self-consistency conditions, in itself provides 
an encouraging sign that we are on the right track, quite aside from the 
empirical predictions the theory generates. 

As the axioms, the deductions from them, and even the manner of 
deduction is very analogous to those of the sequential SM, we can afford 
to be very brief here, going into more detail only when nontrivial differences 
between the sequential and general case arise. 

10.1. The Axioms of Ordered S-Matrix Theory 

10.1.1. Order. Ordered particles are represented as three-colored, 
vertex-oriented cubic tree graphs; these particles can combine to ordered 
processes in any way such that the resulting process graph is a three-colored, 
vertex-oriented, cubic, reducible, coconnected graph. Any bisection of such 
a legal process graph yields a legal channel graph. To every ordered process 
corresponds an ordered amplitude (T matrix) expressing its probability in 
the usual way. (For details see Section 9.) 

10.1.2. Lorentzlnvarianee. The ordered amplitudes are Poincar~ 
invariant, and thus conform to the principle of special relativity. 

Again, since Poincar6 transformations do not affect particle order, but 
only the values of momenta and helicities, nothing need be added to what 
was said in Part One. 

10.1.3. Cluster Decomposition. In order to express unitarity, we in- 
troduce an ordered S matrix, defined in terms of the above ordered amplitudes 
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(connected parts, or T matrix) by means of an appropriate duster decom- 
position equation; it is this ordered SM that is postulated to be unitary 
(see next axiom, Section 10.1.4). 

In order to be an acceptable candidate for a cluster decomposition 
equation, it has to fulfill the following requirements: 

(l) It has to be a generalization of the cluster decomposition of the 
sequential SM; i.e., when we apply it to an ordered SM containing only 
nonexotic mesons, it has to reduce to the cluster decomposition of Part One. 

(2) It has to convert an independence postulate for the ordered SM 
into a corresponding statement about ordered connected parts (namely, 
that if any pal'tide or set of particles of the ordered SM is translated to 
infinity, then the amplitude tends to zero). This is exactly as in Part One. 

(3) When the unitarity equations for the ordered SM are converted 
in to  discontinuity equations for the ordered amplitudes by means of the 
cluster decomposition, the resulting discontinuity equations have the property 
that when the intermediate channels of the unitarity products are erased and 
the resulting channel graphs sewed together, one should obtain the process 
graph of the ordered amplitude whose discontinuity is being expressed. For 
example, the normal threshold discontintfity equation of the four-particle 
ordered amplitude obtained from unitarity and cluster decomposition must 
be of the form 

i 
I 

disc 3 ! t  3 
(SAa)  

2 I 
I 

i I I I 

3 ~ 3 �9 3 2 5 

B C 

2 2 2 2 
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where the symbol 

includes a sum over all intermediate channels with the skeleton 

, /x,z 

(4) It has to be consistent with crossing. By this we mean the following: 
Because of crossing (which will be shown to be valid), a discontinuity 
equation like the above example should be independent of the channel (i.e., 
of which particles are "in" and which are "out"); on the other hand, the 
derivation of such crossing-related discontinuity equations is different for 
each channel: i.e., we start out from a different unitarity equation and employ 
a different duster decomposition for each different channel. So the fact that 
we have to obtain the same discontinuity equation every time imposes a 
stringent consistency condition on the theory; that there should be a cluster 
decomposition that achieves this at all is far from trivial. 

(5) A similar consistency condition is imposed by the fact that, say, 
the above four-particle discontinuity equation obtained as the connected 
part of the four-particle unitarity equation must coincide with the corre- 
sponding discontinuity equation obtained as the disconnected part of, say, 
the six-particle unitarity equation. 

We have found only one duster decomposition that satisfies all these 
conditions; that it exists at all, given all these restrictions, suggests again 
that there is some validity in the approach. We illustrate, in Section 10.1.4, 
with one nontrivial example, how the proposed duster decomposition passes 
these tests. 

We now describe the duster decomposition. Firstly, if the initial and 
final channels of an ordered transition SM element do not have conjugate 
skeletons, then that element is zero. So let us assume conjugate skeletons. 

A cut separating the initial channel graph (and its skeletons) into two 
parts is called corresponding to a cut separating the final channel graph into 
two parts, if each of the pieces has a skeleton conjugate to that of its partner 
in the cochannel. For example, 
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Needless to say, a cut should never pass through a particle, e.g., 

is not a legal cut at all, because it cuts through a particle graph (of a 
baryonium). 

Given an ordered SM element, e.g., 

S y) 
~j ~2 

Then the cluster decomposition expresses this element as a sum of products 
of  ordered connected parts. Each such term is obtained by cutting initial 
and final channels by a series of  corresponding cuts and then resewing 
corresponding initial and final pieces to process graphs. In the above example 
the possible corresponding cuts are 

Let us regard the first pair of  corresponding cuts as an example: 

I 2 [ 2 

L 

3 

B 
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which leads to the cluster decomposition term 

T A ~  E l �9 T C 

and similarly with all other pairs of corresponding cuts. This leads to the 
cluster-decomposition equation: 

S : ~  = T �9 

E 

- - B  ~ 

C D G 

�9 

I 

I 2 5 
t y_ l_J C- - ~ -F 

B 

+ T �9 T ' �9 T 

We often omit the T ( ) ,  and let the process graph stand for the ordered 
amplitude. As usual, 

A O" 
B 

~AB = ~tAt B �9 2 EA~ 3 (PA-  PB ) ~ ~P-AP-B 
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and 
A 

= 0 
w 

(stability). 
We give several more examples to establish the principle of cluster 

decomposition firmly in the reader's mind, since it is very cumbersome to 
express precisely in general terms: 

A 

S . ~ 3 
7 

g 

I A A A 

S ; = s + j B D = I~ + SAC 3BD 

c c ~: 

r D A ~  B t E 

S = B E: + 0 ~, 
c ~ B ~ E  

+ 3A0" 3eE" 8c, 

thus for sequential order, we get the same cluster decomposition as in Part 
One, as we should: 

/ ~ " x  
/ \ 

"' t'! 
S I , 

%\ / 
, /  

I '2 

/ \ 
/ \ 
I 3 'B 
I 1 

\ / 

Y/ ( ' ~ "  2 

I I 
I 3 '  / 

/ 

/ /  
/ \ 

I 
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10.1.4. Ordered Unitarity. Having defined the ordered S matrix by 
means of the duster decomposition we now postulate its unitarity: 

~.,, Si,S~+I = 8it. case sequential SM, i, n, and f a r e  As in the of  the the states 

to be regarded as ordered states, in an ordered Hilbert space; it is there 
that the difference between ordered and physical unitarity lies hidden. 

For example, we have 

I 2 I 2 I 2 

" S  + 
tx,ty , / \ z  

tx,ty,t2 

�9 -'t- �9 �9 �9 " -  

where ~ stands for the usual phase-space integral and helicity sum, and 

~t=.t~ stands for the sum over all particle types tx, tu, that can be inserted 
at that location to form the given skeleton. At any fixed energy the number 
of such terms is finite owing to the nonzero particle masses and the absence 
of accumulation points in mass. 

10.1.5. Maeroeausality. Macrocausality is formulated just as for the 
sequential ordered SM, and with the same consequences: to every ordered 
amplitude corresponds a set of (ordered) Landau diagrams, representing the 
possible multiple scattering modes of that ordered process. Each such Landau 
diagram, in the usual way, determines by means of the associated Landau 
equations a positive-a Landau surface in momentum space, the set of all 
points in p space where that multiple scattering process is kinematieaUy 
possible. And the postulate of macrocausality can then be shown to yield, 
in the usual manner, the analyticity of an ordered amplitude everywhere in 
the physical region (and a neighborhood) except its positive-~ Landau 
surfaces; also obtained are the +i~ rules that tell us how to analytically 
continue the amplitudes around these singularities. All this is completely 
analogous to the sequentially ordered case and requires no further comment. 

What does have to be explained here is which Landau diagrams corre- 
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spond to a given ordered amplitude. As was the case for the simpler sequential 
order, a Landau diagram corresponds to a given ordered amplitude if not 
only its set of external particles is the same, but also the global order of the 
Landau diagram is identical with the order of the given amplitude. So what 
is the global order of a composite (multiple scattering) process, and hence 
of a Landau diagram ? 

For the case of double scattering we have already described the answer 
in Section 9.1.3 (eomposability). If the internal particles in both subprocesses 
form an ordered channel (i.e., correspond to a bisection), and these two 
ordered (internal) channels are conjugate, then there is a global order, and 
it is obtained by erasing the internal channels in both subproeesses and 
resewing the remaining external channels (composition). We show some 
examples: 

B 7 

has a global order: 

Likewise 

has a global order 

But 

2 

'6'0': , t l  
2 

B/~IG F 
= 

2 

A G 

B-.Z A" 
c H 

has no global order, because the internal channels 

x 
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and 

are not conjugate. And 

c 

D 

has no global order because the particles C and D do not form an ordered 
channel (in the left subprocess graph). 

For the case of multiple scattering with more than two subprocesses, 
there is a global order if the pairwise composition can be successively carried 
out in any particular order of succession; if this is the case, then it can be 
carried out in every order of succession and yields the same process graph 
every time; this process graph represents the global order of the Landau 
diagram. Again this is as in Part One; e.g., 

x x x 

A Z ( c o m p o s i t i o n 1  

B \ C ~ ~ A 
\ / 
\ / 
- \  _ / B C 

I 

E'~- .~F B 

[composition)~ D 

C 

(the global order). 
Therefore this is indeed a Landau diagram of the ordered amplitude 

B 

D 

C 
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On the other hand, the Landau diagram 

A C 

" * ' /  
B D I 

\ 
\ E / 

\ \  E I ~  / \ ~ z / /  

F 

( compos i t ion )  

A I 

\ B  \ \ 

F C 

E D / /  
/ 

which latter, as we know, has no global order (since the internal particles 
do not form an ordered channel), and so the given multiple scattering 
diagram is not a Landau diagram of any ordered amplitude. 

This definition of global order is further confirmed when we study 
connected-part unitarity and the resulting discontinuity relations for ordered 
amplitudes: the discontinuity of an ordered amplitude with process graph 
G around any Landau singularity is given by a multiple unitarity product of 
ordered amplitudes with global order G, as in the case of the sequential 
SM, and as it should be for consistency. 

The most important singularities are the normal-threshold and pole 
singularities; they correspond to Landau diagrams consisting of two sub- 
processes, such as 

cl@ B 1()--~ 1(i~ pole in ~ 2  
A D 3 F D s F 

O r  

A 3 x 

0 
B y 

two-particle normal threshold in 

A 3 C 
I 2 I 2 

3 c 

I 

D 

For these singularities the singularity structure of ordered amplitudes is 
particularly simple to formulate: normal thresholds and poles occur only in 
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channel variables corresponding to ordered channels, i.e., to bisections. For 
example, the amplitude 

A 

D 

has poles and normal thresholds in SAB, SBc, SeD, SD~, SE~, S;D, SA~c, SBc~, 
SCDE and no others, in particular not in, e.g., SAD. 

Hence, in general, the singularity structure of ordered amplitudes is 
much simpler than that of physical amplitudes with important consequences 
for dispersion relations, Regge structure, and duality. 

10.1.6. C Symmetry and Color Symmetry. We postulate the charge- 
conjugation symmetry of the ordered SM; as we have seen, C operates on 
an ordered state by converting each particle into its antiparticle, inverting 
the orientation of every edge, and multiplying by a phase factor + 1 for every 
particle involved, which is specific for each particle. Thus, e.g., 

A ~ G A 3~ 

We now similarly postulate a color permutation symmetry. A color 
permutation on a graph, such as P12, changes every edge of color 1 into one 
of color 2, and color 2 into color 1. For the three colors we are dealing 
with there are 3] = 6 such color permutation operations that form the 
symmetric group of order 3. 

The physical postulate of color symmetry implies the following 
statements: 

For every ordered particle A and every color permutation P there is a 
well-defined particle Av of the same mass, spin, and parity, and with a particle 
graph obtained from the particle graph of A by application of P to it. For 
example, for a meson A with the particle graph 

A t 
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the application of  P12 yields another meson Ap12 = A' with the particle graph 

At: 
and Px8 yields Az, xs =- A"  with the particle graph 

Both A' and A"  have the same mass, spin, and parity as A but are distinct. 
None of  the other color permutations yield anything new. Thus mesons 
(on the ordered level) occur in color triplets. 

For  baryons, as long as we are dealing with one flavor only, a color 
permutation leaves the particle invariant, except for a phase factor, which 
can have the values + 1, e ~2"./8. How do we know that a color P permutation 
leaves a baryon A invariant up to a phase factor ? This is because P leaves 
the particle graph of  A invariant; e.g., 

2 

This means that A and Ap12 a r e  in the same sector. Since they also have the 
same mass, spin, and parity, we know from Part One that A = Ael~; and 
similarly for any other baryon or antibaryon A and color permutation P. 
For  similar reasons we knew that there were exactly three mesons in a color 
multiplet, and we know that there are three baryonium 

three exotic baryons of the type 

Y 
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nine mesons of the type 

etc. 
When, as we shall soon do, we flavor-label the free edges of particle 

graphs and sector skeletons, then nonexotic mesons still form color triplets, 
as before, but for the other particles the result is different, although the 
mode of reasoning stays basically the same. For example, for baryons with 
two edges with equal flavors, like 

there are three particles in a color multiplet 

I 

2 5 

I 2 

5 2 I 

And for baryons with three differently flavor-labeled edges there are six 
particles in a color multiplet. 

We hope that when one will pass from the ordered to the physical SM 
by means of the topological expansion it will be shown that all the ordered 
particles in one color multiplet will correspond to one single physical particle; 
at this point this is only a conjecture, since the topological expansion and its 
consequences have not yet been fully worked out. But if this conjecture is 
borne out, then this theory may give a correct description of the full hadronic 
spectrum. 

We can now state the postulate of color permutation symmetry: given 
an ordered amplitude and a color permutation, say P12; if in its process 
graph we replace each particle A~ by the particle A~p1~, and replace edge 
color 1 by 2, and 2 by 1 everywhere in the graph, then the resulting ordered 
amplitude is numerically equal to the original amplitude, except for a phase 
factor with the possible values + 1. For example, 
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A 

F 

where ~ = + 1. 

f 
(by PI2 symmetry) / \ 

A 

Ep 
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It is to be noted that there is a graph-theoretical symmetry of cubic 
reducible graphs with respect to reversal of edge orientation and to color 
permutation in the sense that any relation involving a set of such graphs 
(like, e.g., a unitarity equation) is preserved under these symmetry operations; 
this is a mathematical symmetry independent of any physics. Given the 
bootstrap definition of ordered amplitudes by means of sets of unitarity 
equations, this mathematical symmetry is a prerequisite for the postulated 
physical symmetry of the particles and amplitudes; but it is not a sufficient 
condition (as the example of broken flavor symmetry shows), so that we 
still need to postulate C and color symmetry, as we have done. 

10.1.7. The Bootstrap Conjecture. The bootstrap conjecture holds that 
the combined demands of all the listed axioms so constrain the possible 
structures of the ordered SM that they actually only admit of one solution, 
namely, the one describing the real world. 

In the case of ordered amplitudes the bootstrap conjecture takes on 
particular importance, since unlike physical amplitudes they are only ex- 
tremely indirectly defined in terms of experiment (via the topological ex- 
pansion). The bootstrap conjecture then at least has them defined in terms 
of their properties; an actual implementation of the bootstrap program is 
still likely to be formidable, though less so than for the physical SM. 

10.2. Derived Properties of  the Ordered S M  

10.2.1. Unitarity Relations for Connected Parts. If, in the unitarity 

equations for the ordered SM elements ~ S~S~+f = ~f we substitute the 

SM elements with their duster decomposition into products of connected 
parts, then we obtain a set of equations expressing unitarity in terms of 
connected parts only, of the kind 

M_/'  M_.,,' 

+ �9 �9 �9 



912 Weissmann 

except that now the occurring ampli~des are all ordered. The global order 
of the unitarity products on the right-hand side is always identical to the 
order of the two left-hand terms, and conversely eve~ such product con- 
tributes to the right-hand side. The various consistency conditions mentioned 
in Section 10.1.3 are all satisfied in the examples we have examined, but we 
have not proved consistency in general, nor do we consider the question of 
consistency as trivial. 

Examples: The unitarity equation for 

li > f ~ M, 
iMp_ 

yields the relation 

\ y M ,  \ _~/Mz 
B 

where 

: Z ~ T  {§ ' �9 

Z 

indicates a sum over all intermediate channels with the skeleton 

iI 

Similarly, if 

C 3 
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(together forming the process graph) 

then we obtain the relation 

A 

D 

A 

D 

T 
( - )  

§ 

I I 

2 

2 ~  T ( ' t ' )  I 3 I D 

+ T ~" 2 3 

3 

I 

3 

A 

J 
D 

Tc_ ( 
2 

7- ,, 

3 

D 

r 3 

T 
( - )  

D 2 

3 3 

T 

(-) I 

I I 

3 3 
c o n t i n u e d  o v e r l e a f  
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2 2 

2 2 

2 I 

10.2.2. Discontinuity Equations. Starting 

2 

from 

Weissmann 

3 I 

D 3 
2 

2Y 
the above nnitarity 

equations, one can again, by repeated use of unitarity and duster de- 
composition, derive a set of discontinuity equations that express the dis- 
continuity of an ordered amplitude around any of its Landau singularities in 
terms of appropriate unitarity products. In the simpler examples that we have 
checked (poles, normal thresholds, triangle singularities), the discontinuity 
formulas are formally identical with those of the physical and sequentially 
ordered SM. We believe that this is generally true, but have not proved it. 

10.2.3. Pole Faetorization. Pole factorization follows, as in Part One, 
from the pole discontinuity formula, and implies the pole-particle identity. 

10.2.4. The Analytic Structure of Ordered Amplitudes and Duality. 
Macrocausality implies that ordered amplitudes are analytic in and around 
the physical region, and limits the locations of possible singularities to the 
positive-c, Landau surfaces, on the other hand the discontinuity formulas 
imply that ordered amplitudes actually become singular on these surfaces. 
Thus the analytic structure of ordered amplitudes in the physical region is 
fully determined from first principles, as was the case for sequentially 
ordered amplitudes. 

For four-particle amplitudes the consequences are particularly simple 
to express: they have normal-threshold cuts in only two of the three channel 
variables. For amplitudes like 

i A t D 

Or Z 3 2 3 

B 8 = C 
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this is obvious, but it is also true for more complicated amplitudes like the 
four-particle amplitude 

/ M . J  / 
t / 

c 

All these amplitudes have cuts in SAB, See, but not in sac. That the statement 
is generally true follows from the graph-theoretical fact that in a cubic, 
reducible coconnected four-particle graph only two of the three possible 
ways of partitioning the graph into two two-particle sets correspond to a 
bisection. 

As a consequence, ordered amplitudes have the property that we called 
"duality" in Part One, implying exchange degeneracy, absence of Regge 
cuts, and the other properties mentioned there. 

10.2.5. Crossing and TCP. The crossing property for ordered ampli- 
tudes can be proved from the basic postulates, plus a technical assumption 
about the singularity structure outside the physical region, quite analogously 
as for sequentially ordered amplitudes. 

It states that two ordered transition amplitudes corresponding to the 
same process graph are related to one another by analytic continuation in 
the usual sense. For example, 

T 

and 

D a  E~ 

T 
B 

are related by crossing as is every other ordered transition amplitude obtained 
from the same process graph 
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A 

G 

by bisection. They are all described by one and the same analytic function, 
which is thus a characteristic of the process graph, and not of the particular 
way in which the process graph is bisectedinto channel graphs. We designate 
this analytic function by 

q- 

The T( ) may be omitted. 

/ A \ 

G 

As was the case for sequentially ordered amplitudes, the significance 
of the concept of process graph, implying as it does a joint order of the 
"in"- and "out"-channel particles, rests upon the validity of crossing. 

Again, we can regard the analytic continuation of ordered transition 
amplitudes to real-momentum regions corresponding to ordered processes 
which are not ordered transitions (i.e., where "in" and "out" particles do 
not each form a connected ordered channel) as defining the appropriate 
amplitudes; remember that up to this point we had introduced only ordered 
transition amplitudes. For example, the amplitude corresponding to the 
ordered process 

A (in) 3 D(out) 

B(ouF) ~ -C(in) 

is defined by the appropriate analytic continuation from the ordered 
transition amplitude 

1 
\B (in) - : C (out)/ 
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The TCP theorem follows, as for sequentially ordered amplitudes, 
essentially by repeated application of crossing. 

10.2.6. Some Other Properties. The comments made in Part One, Sec- 
tion 3, about the validity of dispersion relations, Hermitian analyticity, 
extended unitarity, and the Froissart bound continue to hold in the context 
of generalized order, as does the remark about the pole conjecture. 

10.3. Flavor 

Here again we can afford to be brief, since the ideas and arguments 
are closely analogous to those of Part One, Section 5. In summary, flavor 
again enters the picture via order selection rules that prohibit certain particles 
from being neighbors in a process graph; if there are any of these selection 
rules, then the free edges of particles and skeletons (sectors) can each be 
assigned a flavor label, and only free edges with the same flavor label (and 
of course color and orientation) are allowed to be sewed together in a non- 
zero ordered amplitude (OZI rule). We now describe this reasoning in more 
detail. For simplicity's sake we restrict ourselves to baryons here, but the 
procedure goes through with exotics too. 

Regard any two baryons A and B. If  

and hence also 

I _ 2  

are interacting channels, then we call A and B three-neighbors; similarly, if 

is interacting, then A and B are two-neighbors; and similarly for one-neigh- 
bors. Order of selection rules stating that an ordered channel is noninteracting 
can always be traced back to the existence of such noninteracting two-particle 
channels, as was the case for mesons. 
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I f  A and B are one-neighbors, and B and C are one-neighbors, then 
A and C are also one-neighbors; i.e., being a one-neighbor is a transitive 
relation (the same is of  course true for two-neighbors and three-neighbors). 
This is so because if 

A ,  B} 
B , C 

are one-neighbors, then 
2 

- 0 

3 

and so the discontinuity formula 

i I 

I 

A I C 

- -  ~ 3 2 3 C i B 

A I C 
\ 2 3 2 3 

\ 

0 

and so A and C are one-neighbors, as claimed. 
Since the relation of being one-neighbors is also symmetric and reflexive, 

it is an equivalence relation; therefore the set of  all baryons decomposes into 
equivalence classes in such a way that any two particles from the same class 
are one-neighbors, whereas any two particles from different classes are not. 
We label these classes with a discrete label i<1); analogously we define i C2) 
and i ~3) to Label the two-neighbor and three-neighbor equivalence classes. 
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These indices are called flavor labels. Obviously, every baryon belongs to a 
definite one-equivalence class i (1), a definite two-equivalence class i C2~, and 
a definite three-equivalence class i(a~; we say it is in the class (i(l~ic2~ics>), 
and denote this by 

J~i O) 

~ (3 ) 

I 

It is clear by construction that the two free edges of  any two particles 
joined together in a nonzero process graph must have the same flavor; e.g., in 

A ~ 13 

B I C 

we must have i~ > = i~ ~, i~ ~ = i~ ~, i~ ~ = i~ ~, etc. (OZI rule). As a result, 
all edges of  a nonzero process graph can be uniquely flavor-labeled. With 
this achieved, the identification of  process graphs with quark diagrams and 
o f  edges with quarks follows as in Part One, Section 5. 

We again postulate that there are no selection rules besides order 
selection rules; thus an ordered amplitude is nonzero if and only if it satisfies 
the above OZI rule. And sectors are characterized by skeletons with their 
free edges flavor-labeled, as are therefore the particles themselves. For  
example, 

:L 
characterizes a particular sector, distinct, e.g., from the sector 

Similarly 

? 
p/, ~n 

characterizes a sector (note that inner edges are not flavor-labeled), etc. 
A priori, there is no relation between the sets of indices i ~1~, i c2), i ~3~. 
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But owing to color symmetry, a one-to-one relation exists between these 
sets: to every flavor i cl) there is a corresponding flavor i c2) and a correspond- 
ing flavor i (3). That is why we may, e.g., talk about strangeness rather than 
about one-strangeness, two-strangeness, and three-strangeness. In other 
words, we can regard color and flavor separately: e.g., i <2) = (i; 2): flavor i 
and color 2. 

As for the sequentially ordered amplitudes given n flavors, we can 
define a set of 3n canonical additive conserved quantum numbers Q,C~ that 
indicates the net number of edges of color a and flavor i coming out of a 
particle or channel. Of physical importance are the n canonical quantum 
numbers 

QCO = Q(~I)+ Q(t~)+ Qc~ a) 
3 

from which the color degree of freedom has been eliminated. Their importance 
results from the fact that when we pass via the topological expansion to the 
physical SM, then the only selection rules surviving are just those expressible 
as Qc~) conservation; thus the canonical QC~)'s are the only additive conserved 
quantum numbers at the physical level. Since the details of the topological 
expansion for the generalized ordered SM are still in the process of being 
worked out, the above statement remains a likely conjecture at this point. 

One usually uses a slightly different set of quantum numbers, replacing 
the set QO,>, QC,~), Q(S), QCC>, QCt),... by the linearly related set Qr QcB), QCS), 
QCC), Q<t),..., where QCOl) is the electric charge mentioned in Part One and 
QcB) = ~ Q<O is the baryon number. In terms of these quantum numbers 
the spectrum of particles obtained is the usual zero-triality quark-model 
spectrum. And when we add the postulate of SU(n) flavor symmetry, we 
obtain the familiar quark-model multiplet structure. What still has to be 
better understood (on the basis of the topological expansion) is the way that 
color is eliminated and the multiplicity of particles reduced in the transition 
from the ordered spectrum to the physical spectrum of particles. For example, 
we would like to obtain only one physical pion (p~) corresponding to the 
three ordered particles 

I l ' Ip  ~' n,  3 n 

10.4. The Planar Approximation 

As was the case for the sequentially ordered amplitudes (see Part One, 
Section 6), when we wish to calculate the physical amplitudes, we have to 
eliminate ("average out") the particle order. This is done by means of a 
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generalization of the topological expansion, the details of which are being 
worked out (Sursock, 1978). The lowest-order term of the topological ex- 
pansion is the planar approximation, obtained by adding or, respectively, 
subtracting all ordered amplitudes with a given set of external particles. 
These planar connected parts, being unordered, can be directly compared 
with the physical connected parts. 

Let us regard a simple example, a planar amplitude involving three 
baryons and three antibaryons. Then we have 

B t B 3 

Bz ~ w 

. ~  "4- 

B I 

_ 8 ~  g3 
+ 

all other of the terms type 

.,,~ L \  ~ 
+_ _ 

B2~'- B2 
all other terms of the type 

B 2 B I o,/f o, 

8z BI 

J B 3 

~ 3  3 ~ 2  

BI + �9 �9 . 
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How is the relative sign of any two terms, say 

Bi 

and 

BI B2 

Bi~ w 
B 3 

determined? The rule that we propose here is the only one that we were 
able to find that yields the correct statistics and also determines the relative 
sign, in a nonarbitrary way, of ordered amplitudes with nonisomorphic 
process graphs, such as in the example above 

( ~  and 
The rule is based on the "mate assignment" of the two terms in question. 
Thus in the first example above, B1 and B1, B2 and J~z, and B3 and B3 are 
mates, which we may denote by 

B2 BJ 

whereas in the second example the mate assignment is 

B3 BJ 

In this case the permutation relating these two mate assignments is odd 
(it involves an odd number of transpositions, namely, one: the transposition 
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B2~--~B3); the rule then states that the relative sign of the two terms is 
negative; if the permutation had been even, the sign would have been positive. 

With this rule governing the signs, we are guaranteed the correct 
statistics: Bose statistics for identical particles with an even number of free 
edges, and Fermi statistics for those with an odd number of free edges. 

One might ask whether there are any theoretical reasons why particles 
with an odd number of free edges must be fermions, and with an even 
number of bosons (empirically this is of course true). As we have seen, every 
particle occurs as a pole in some purely baryonic channel; if the particle 
has an even (odd) number of free edges, then the number of baryons and 
antibaryons in the channel is necessarily even (odd). From this one can 
conclude that particles with an even number of free edges are necessarily 
bosons, whether baryons are fermions or bosons. And particles with an 
odd number of free edges are bosons if baryons are bosons, and fermions if 
baryons are fermions. Therefore the basis question to ask is why baryons 
are fermions, as we know empirically that they are. One way of answering 
this is by predicting the spin of a baryon. If we can show that baryons have 
half-integral spin, then the spin-and-statistics theorem shows that they must 
be fermions. We have not yet explored the whole problem of spin, and must 
therefore leave the question at that. 

The general planar amplitudes we have defined here have the same 
properties that we found mesonic planar amplitudes to have in Part One, 
Section 6, and for the same reasons; thus little more need be said here. 
They also lack exact unitarity, but it is to be hoped and expected that there 
will be mechanisms in the generalized topological expansion, as there were 
in the mesonic one, that will suppress nonplanar terms and explain the 
approximate planarity found in nature. One argument is already apparent: 
since planar amplitudes obey pole factorization, which plays the role of 
unitarity with one-particle intermediate states, we can expect planar am- 
plitudes to be approximately unitary to the extent that they are resonance- 
dominated. Also, 1/N arguments will suppress nonplanar terms. 

Another important problem that has to be solved in the context of the 
topological expansion is the correspondence between ordered and physical 
particles. The presence of color renders this relationship more complicated 
than in the sequential case. For example, we expect that to the three ordered 
particles 

t t: I ~ 2 T 

related by color symmetry there corresponds one physical particle (meson). 
Only when this relationship will have been worked out will one be able to 
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make completely specific predictions about the spectrum of hadrons and its 
multiplet structure. 

U. CONCLUSION 

11.1. What Has Been Achieved 

By extracting the essence of the duality approach, we have arrived at 
the concept of sequential particle order; by combining it with the basic 
principles of S-matrix theory we have constructed a theory of the sequentially 
ordered S matrix that describes nonexotic mesons, and provides a theoretical 
foundation for the successful group of models known as DTU. Besides the 
usual S-matrix properties the theory predicts the duality and quark-model 
properties of amplitudes including the OZI rule, the nature of the mesonic 
spectrum and most of the other observed regularities of mesons. In particular, 
all the quark-model predictions regarding mesons other than those pertaining 
to spin and parity (which we have not yet incorporated into our scheme) are 
reproduced by the ordered SM approach. A totally different understanding 
of the origin of the quark structure of hadrons is thus gained: quarks as order 
relationships between particles rather than as constituent particles. 

This theory is then extended to all hadrons by a generalization of the 
concept of order. This generalization is so restricted by consistency con- 
ditions as to be unique and yields a three-color zero-triality quarklike 
hadron spectrum including nonexotic mesons and baryons as well as a 
well-defined set of exotic hadrons including baryonium. All the general 
features of the sequentially ordered theory mentioned above are maintained. 
Thus, in principle, the extension of DTU to all hadrons appears to have 
been achieved. 

Together with a topological expansion that expresses physical amplitudes 
in terms of ordered ones, the ordered S-matrix approach appears to offer the 
greatest hope yet of a successful theory of hadrons and strong interactions. 

11.2. What Remains to be Done 

It is our opinion that in the direction suggested by this paper there lies 
a vast new territory waiting to be systematically explored. 

On a more immediate and technical level, a host of problems have to be 
solved. We just mention a few of them here. 

For example, the proof that the theory requires exactly three colors 
needs to be tightened up. The connection between particle order and 
peripherality deserves examination, as does the origin of order selection 
rules (flavor) and internal symmetries, especially SU(2). 
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By understanding the origin of order selection rules, possibly on the 
basis of topological structure, the nature and properties of flavor might be 
illuminated. 

Consideration of spin and parity should be introduced, allowing their 
prediction as in the SU(6) scheme, and also allowing us to understand the 
relative success of nonrelativistic potential quark models of charmonium. 
In which sense can one attribute spin 1/2 to the edges? Why are baryons 
necessarily fermions ? 

A systematic Regge theory of ordered amplitudes can be developed, 
leading (because of the simpler singularity structure) to a most probably 
considerably simplified Reggeon calculus. Are ordered amplitudes really, as 
conjectured, devoid of cuts and fixed poles in the j plane ? 

The relation between the ordered and the physical amplitudes and their 
respective spectrum of particles has to be better understood on the funda- 
mental level. The generalized topological expansion has to be constructed, 
including the elimination of the color degree of freedom. The resulting 
detailed predictions of the spectrum of physical particles have to be worked 
out. How does "mixing" arise ? Why do some nonstrange baryon trajectories 
occur without an exchange-degenerate partner? What is the multiplet 
structure of exotics ? Their widths ? 

More broadly speaking, the DTU calculations, so successful in the 
hadron sector, should now be extended to all hadrons, and compared with 
experiment, probably leading to a quantitative phenomenological under- 
standing of strong interactions. 

In this whole work we have never dealt with electromagnetic and weak 
interactions; as it stands, our approach deals only with strong interactions. 
And yet it is in the area of electromagnetic and weak interactions that the 
conventional constituent quark (parton) approach has met with some of its 
more impressive successes. Therefore, until the ordered S-matrix approach 
has been extended to these interactions, and the partonlike features such as 
scaling understood on that basis, the idea of quarks as constituent particles 
will probably be hard to dispel completely. To achieve this thus appears as 
one of the major tasks ahead. 

Maybe the most challenging and important problem may turn out to 
be the development of an appropriate conceptual and mathematical frame- 
work in which to formulate the theory of ordered processes. We wish to 
remind the reader that we have chosen the language of S-matrix theory for 
this purpose simply because it is the best one available at present; but we 
should be aware that the conceptual apparatus of quantum mechanics, and 
of S-matrix theory in particular, is set up to describe statistical correlations 
between experimental observations, and is hence formulated in terms of the 
observable parameters momentum and helicity. In particular, it already 
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presupposes various aspects of physical reality, such as a 3 + 1-dimensional 
space-time with Minkowski metric, the existence of particles, etc., thus 
precluding any deeper understanding of these features. On the other hand, 
ordered processes may operate at another level that is "prior" to space-time. 
Accordingly, we suspect that in its final form the theory of ordered processes 
will be formulated in a conceptual and mathematical framework that is yet 
to be developed, and in which particle order, vertices, color, flavor, mates, 
etc., would find their natural interpretation. And in this framework questions 
like why space is three-dimensional (this might well be related to the threeness 
of color and the resulting fundamental role of the three-vertex), the origin 
of space-time, and other basic questions might be susceptible to inquiry. 

We find this promise of a radical conceptual revolution as exciting as 
the prospect of a phenomenologically successful theory of strong interactions. 
In the following postscript we engage in some rather general speculation on 
the direction that this development could take. 

PHILOSOPHICAL POSTSCRIPT 

Classical physics is closely associated with the mechanistic philosophy 
of nature according to which the objective reality of the universe is such that 
it can be described as a space-time continuum containing material objects 
analyzable into indivisible, elementary constituent particles, and electro- 
magnetic fields, both of which evolve in time according to deterministic 
differential equations of motion; all other quantities and qualities can in 
principle be reduced to these basic concepts. 

This view of the world resulted from claiming absolute and unlimited 
validity for a set of concepts and relationships that has only approximate 
validity in a limited domain. And although this kind of sweeping generaliza- 
tion could not conceivably be considered scientific, it nevertheless became 
the generally accepted "scientific world-view," the scientific paradigm, 
governing not only physics but all of natural science and increasingly even 
social sciences and humanities, limiting the possible forms of models and 
theories scientists were willing to consider, the kinds of connections and 
relationships they were prepared to look for, and even the kinds of phenomena 
they considered possible or "legitimate." 

With the advent of quantum theory the limitations of classical physics 
became apparent, and the rug was completely swept from under this 
philosophy of nature. Not only did determinism have to be discarded but 
it was recognized that any model of reality based on the traditional notion 
of localized objects existing in space-time necessarily contradicted the ex- 
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perimental predictions of quantum theory (Stapp, 1971a; Bell, 1978; Clauser 
and Shimony, 1978); that space and time could not be considered as objective 
realities, but rather as categories of our experience [much like color, which 
already classical physics had reduced from the objective property the naive 
view holds it to be to something "in the eye of the beholder" (Stapp, 1971b)]; 
that particles did not have the attributes of material objects, but rather of 
relationships (Stapp, 1971a); that the idea of "composite particles" versus 
"'elementary particles" (e.g., that a hydrogen atom "consisted of" a proton 
and an electron) is a nonrelativistic approximation that breaks down at the 
level of strong interactions (Blancenbecler et al., 1960). Thus all the elements 
of the traditional world-view have been discredited as fundamental notions, 
even if they retain their usefulness in the domain of everyday experience 
from which they are drawn. 

Nevertheless, 50 years after the discovery of quantum theory, the view 
of the world and of man based on classical physics still dominates the minds 
of most scientists, including physicists; e.g., particles may be imagined as 
essentially pointlike objects, but with an intrinsic uncertainty in position 
and momentum due to the impossibility of measuring both quantities 
simultaneously; or they may be imagined as waves collapsing with each 
subsequent measurement. 

The main reason for this persistence of classical intuition is presumably 
the fact that quantum physics, unlike classical physics, does not admit a 
realistic interpretation (Stapp, 1971b, 1970): it cannot be interpreted as 
describing an objective reality rooted in space-time, and indeed does not 
refer to any reality at all; all attempts at realistic interpretations of quantum 
theory have ended in intractable paradoxes. Instead, quantum theory has 
to be interpreted pragmatically 2 (Copenhagen interpretation): it provides 
statistical correlations between sets of observations (preparation and measure- 
ment) (Stapp, 1971a). Since quantum theory does not give us a new picture 
of reality to hold on to, it is understandable that the old, fundamentally 
incorrect but practically often useful pictures have survived so long. 

An attempt to develop a new model of reality compatible with relativistic 
quantum theory was undertaken by H. P. Stapp (1975), based on a philo- 
sophical framework Constructed by A. N. Whitehead (1979). In this model, 
physical reality is conceptualized as a sequence of events that can be localized 
(assigned a location in a four-dimensional mathematical space). Quantum 
mechanics (S-matrix theory) represents the "pragmatic limit" of this model, 
i.e., its statistical predictions for a scattering experiment. 

We suspect that it is in this context that particle order must be seen: the 
process graphs symbolize patterns of causal connectedness between events. 

2 For an introduction to pragmatism see James (1970). 
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Thus the picture of the material universe suggested here is one of a web of 
relationships rather than one of  a collection of material objects. Interestingly 
enough, this view bears a strong similarity to various Eastern philosophies 
(Taoism, Buddhism and others) (Capra, 1975), just as the materialist phil- 
osophy of classical physics bears a strong resemblance to the atomistic 
philosophy of  Democritus. 

We believe that science, with physics as usual in the vanguard, is about 
to undergo a major paradigm shift in the sense outlined above, and that 
particle order could prove an ingredient in bringing it about and shedding 
new light on the nature of  physical reality. 
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